
FUNCTIONS & PARAMETER PASSING

GENERAL VS. SPECIALIZED FUNCTIONS

Suppose you had a function called
drawSquare, which, when called, always
produces the following output:

* * * *

* * * *

* * * *

* * * *

This is an example of a very specialized
function, since it is only capable of drawing
a very specific figure

A GENERAL SQUARE FUNCTION

Contrast the previous example with a similar
function that takes an argument specifying
the square’s size; for example,
drawSquare(2) would produce the following
output:

* *
* *

An even more general function might take
an argument specifying the character to
draw with; for example, drawSquare(2, ‘$’)
would produce:

$ $
$ $

SPECIFYING FUNCTION REQUIREMENTS

 We can see that a more general function might

require arguments; but how do we know what the

requirements are?

 A general method for specifying the requirements

for a function call is called function declaration or

function prototyping

FUNCTION PROTOTYPE

Declaration statement for function

Provides information necessary to call
function
 Data type of function’s return value (if any)

 Data type(s) of any required argument(s), listed
in the order required: this is called the parameter
list

Usually appears above main() or in a
header file

Function prototypes are declaration
statements – each one ends with a
semicolon

FUNCTION PROTOTYPE EXAMPLES

 The function prototypes for some familiar functions

are listed below:

int rand(); // appears in the stdlib.h header file

double sqrt (double); // appears in math.h

double pow (double, double); // also in math.h

FUNCTION PROTOTYPES

A function prototype includes the following
parts:
 The function’s return type; can be any data type,

including void (meaning no return value)

 The function name (must be a valid C++ identifier –
same rules apply for functions and variables)

 The function’s parameter list, which specifies the
data type of each required argument, and
optionally includes a name for each parameter

EXAMPLES

int rand();

type of value returned

name of

function

parameter list

double pow (double, double);

Note: a function’s parameter list may, but does

not have to, include a name for each

parameter; the parameters are not named in

the examples above

MORE EXAMPLES

 Previously, we considered 3 possible versions of a

drawSquare function; the prototypes for each version are

shown below:

void drawSquare();

// draws a 4x4 square made of asterisks

void drawSquare(int);

// draws a square of the specified size, made of asterisks

void drawSquare(int size, char pixel);

// draws a square of the specified size using the specified

// picture element

 Note that these are examples of overloaded functions –

their prototypes differ only in their parameter lists

FUNCTION DEFINITION

 A function prototype merely declares a function,

specifying requirements for a function call

 A function call invokes a function

 A function definition implements the function; that

is, it contains the code that will be executed when

the function is called

FUNCTION DEFINITION

 A function definition has two parts:

 The heading, which supplies the same information as the

function prototype

 The body, which implements the function

FUNCTION DEFINITION

void drawSquare()

{

 for (int x=0; x<4; x++)

 {

 for (int y=0; y<4; y++)

 cout << “* ”;

 cout << endl;

 }

}

Function heading

Function body

NOTES ON FUNCTION DEFINITION

 Although the function’s heading contains the same
information as the prototype, it appears in slightly
different form:

 There is no semicolon at the end of the function heading

 If there are any parameters, they must be named, even
if they were not named in the prototype; if they were
named in the prototype, the names must match exactly

EXAMPLE

The second drawSquare prototype didn’t specify a name for

its parameter; the function definition must provide a

parameter name

void drawSquare(int); // prototype

void drawSquare(int size) // definition

{

 for (int x=0; x<size; x++)

 {

 for (int y=0; y<size; y++)

 cout << “* ”;

 cout << endl;

 }

}

EXAMPLE

The third drawSquare function’s prototype specified names

for both parameters; the function definition must use exactly

the same names

void drawSquare(int size, char pixel); // prototype

void drawSquare(int size, char pixel) // definition

{

 for (int x=0; x<size; x++)

 {

 for(int y=0; y<size; y++)

 cout << pixel << ‘ ’; // output character,

 cout << endl; // then space

 }

}

VALUE-RETURNING FUNCTIONS

The function definition examples we have

seen so far have all been void functions

A value-returning function has an additional

requirement in its definition; such a function

must include a return statement

The return statement specifies what value a

function returns; this is the value that a

function call represents when used in an

expression

EXAMPLE

The function below returns the cube of its argument:

double cubeIt (double value)

{

 double cube;

 cube = value * value * value;

 return cube;

}

Another way to write the same function:

double cubeIt (double value)

{

 return value * value * value;

}

VOID FUNCTIONS AND RETURN STATEMENTS

 Most void functions can be written without return

statements

 However, sometimes it’s handy to be able to use a

return statement in a void function

 If desired, the following statement can be used in a

void function:

return;

EXAMPLE

Suppose you are writing a function that
displays a menu of choices for the user,
then performs some action based on the
user’s choice

 If the user chooses a valid menu item, a
function is called to perform the chosen task

 If an invalid item is chosen, or the user
chooses to quit, the function returns without
performing any further action

The next slide shows an example of such a
function

EXAMPLE

void doSomething()

{

 int choice = getChoice(); // calls function that displays menu &

 switch(choice) // gets user’s preference

 {

 case 1:

 drawSquare();

 break;

 case 2:

 drawCircle();

 break;

 default:

 return;

 }

}

EXAMPLE: SAFE INPUT OF NUMBERS

We have already discussed the problems

involved with extraction of numeric data in

interactive programs

 User can, accidentally or deliberately, type bad

data

 When bad data are encountered, the input

stream shuts down, and no more data can be

read

We have also seen an effective solution to

this problem; instead of reading numbers

directly, read characters and convert them

to numbers

SAFE INPUT EXAMPLE

The code below provides a safe input method for a positive integer:

int number = 0;

char c;

cin.get(c);

while(c != ‘\n’)

{

 if(isdigit(c))

 {

 number = number * 10;

 number = number + (int)(c – ‘0’);

 }

 cin.get(c);

}

SAFE INPUT EXAMPLE

 The code on the previous slide is a good example

of a useful routine that we might want to use

several times within a program

 Rather than copy and paste this code wherever we

need to input a number, we can just encapsulate

the code within a function, then call the function

whenever we need to read a number

FUNCTION DEFINITION PLACEMENT

Function definitions can be placed either

before or after the main function in a

program, but not within the block that

defines main()

Function prototypes should always appear

before main(), and before any other function

definitions

 If function definitions are placed above

main(), then function prototypes may be

omitted; however, you need to know how to

read and write prototypes, so it is good

practice to use them

HEADER FILES

 Functions are often written to be generally useful

 If a function works well to solve a problem in one

program, it would probably solve a similar problem

in a different program

 The use of header files can make your code more

re-useable

HEADER FILES CONTAIN DECLARATIONS, SUCH

AS THE FOLLOWING:

 function prototypes like
 double sqrt(double);

 named constants like
 const int INT_MAX = 32767;

 classes like

 string, ostream, istream

 objects like

 cin, cout

HEADER FILES

 Header files also contain documentation; for

example, each function prototype in a header file

would be accompanied by a comment explaining

what the function does

 A header file is a text file written in C++, but the file

extension is .h instead of .cpp

IMPLEMENTATION FILES

When header files contain function
prototypes, a corresponding implementation
file is required

The implementation file contains the
definition(s) of the function(s) declared in
the header file

The implementation file has the same name
as the header file, but has a .cpp extension

An implementation file can be compiled, but
it is not a program, because it doesn’t
contain a main() function

USING YOUR OWN LIBRARIES

 To create your own library of functions, start by
placing your function prototype(s) in a header file

 Define your function(s) in an implementation file

 Write your program, including main(), in a separate
file

 The next three slides illustrate this process

HEADER FILE

 The text of the file safenum.h is shown below:
#ifndef SAFENUM_H

#define SAFENUM_H

int getNum();

// Reads and returns a number from the standard input
stream; ignores

// extraneous characters. If no digits are entered, returns 0

#endif

 The statements that start with the # character are
preprocessor directives that indicate that the code
between the #ifndef directive and the #endif
directive should only be included in a program if it
hasn’t been included already; this prevents a
possible linker error

IMPLEMENTATION FILE

 The implementation file contains the definition(s) of
function(s) declared in the header file; it should
contain any preprocessor directives needed for the
function code, as well as a preprocessor directive
indicating inclusion of the header file

 In this example, the syntax would be:
#include “safenum.h”

 This syntax assumes that the header file and
implementation file are in the same folder on your
disk; if they are not, the full path to the file would
need to be included in the quoted string

PROGRAM FILE

The program file would contain main(), and
would have a name that is different from the
header and implementation files

As well as any other necessary
preprocessor directives, the program file
would need an include directive for the new
header; in this example:
#include “safenum.h”

Again, the full path would be necessary if
the header is in a different disk folder

LINKING YOUR HEADER FILES

The process described in the last several
slides is the correct one in the most general
sense, independent of any particular
compiler or programming environment

 In most IDEs (such as dev or Visual C++),
however, there is at least one additional
step required to properly link your header
file, implementation file and program – this
involves creating a project file

This is an environment-specific task; it will
vary according to which IDE you’re using

PARAMETER PASSING METHODS

 In all the function prototype and definition
examples we have seen thus far,
parameters are specified as if they were
simple variables, and the process of
parameter passing is comparable to the
process of assigning a value to a variable:
 Each parameter is assigned the value of its

corresponding argument

 Although the value of a parameter may change
during the course of a function, the value of the
corresponding argument is not affected by the
change to the parameter

PASSING BY VALUE

The process described on the previous
slide, and illustrated in all examples thus far,
is called passing by value - this is the
default method for parameter passing

When arguments are passed by value:
 a copy of each argument value is passed to its

respective parameter

 the parameter is stored in a separate memory
location from the storage location of the
argument, if the argument has one

 Any valid expression can be used as an
argument

EXAMPLE
The program below illustrates what happens when arguments are passed by

value. A tracing of the changes in the program’s variables is shown on the right.

int multiply (int, int);

int main()

{

 int a, b, c;

 a = 2;

 b = 5;

 c = multiply(a,b);

 a = multiply(b,c);

 return 0;

}

int multiply (int x, int y)

{

 x = x * y;

 return x;

}

a b c x y

2 5 2 5

10

10

5

10

50

50

When the program ends, the variables

remaining in memory have the values

shown in red

LIMITATIONS OF PASS BY VALUE

 Recall that a function can have either one return
value or no return value

 If we want a function’s action to affect more than
one variable in the calling function, we can’t
achieve this goal using return value alone –
remember, our options are one or none

 The next example illustrates this problem

EXAMPLE – SWAP FUNCTION
Suppose we want to write a function that swaps two values: that is, value a is

replaced by value b, and value b is replaced by the original value of a. The function

below is an attempt to achieve this goal.

void swap (int x, int y)

{

 int tmp = x;

 x = y;

 y = tmp;

}

The function appears to work correctly. The

next step is to write a program that calls the

function so that we can test it:

int main()

{

 int a=2, b=6;

 cout << “Before swap, a=” << a << “ and b=”

 << b << endl;

 swap(a,b);

 cout << “After swap, a=” << a << “ and b=”

 << b << endl;

 return 0;

}

Output:

Before swap, a=2 and b=6

After swap, a=2 and b=6

WHAT WENT WRONG?

 In the swap function, parameters x and y
were passed the values of variables a and b
via the function call swap(a, b);

Then the values of x and y were swapped

When the function returned, x and y were no
longer in memory, and a and b retained their
original values

Remember, when you pass by value, the
parameter only gets a copy of the
corresponding argument; changes to the
copy don’t change the original

BUILDING A BETTER SWAP FUNCTION:

INTRODUCING REFERENCE

PARAMETERS

C++ offers an alternative parameter-passing

method called pass-by-reference

When we pass by reference, the data being

passed is the address of the argument, not

the argument itself

The parameter, rather than being a separate

variable, is a reference to the same memory

that holds the argument – so any change to

the parameter is also a change to the

argument

REVISED SWAP FUNCTION

We indicate the intention to pass by reference by appending an ampersand (&)

to the data type of each reference parameter. The improved swap function

illustrates this:

void swap (int& x, int& y)

{

 int tmp = x;

 x = y;

 y = tmp;

}

The reference designation (&) means that x and

y are not variables, but are instead references

to the memory addresses passed to them

If we had the same main program as before,

the function call:

swap(a,b);

indicates that the first parameter, x, is a

reference to a, and the second parameter, y, is

a reference to b

HOW PASS-BY-REFERENCE WORKS

 In the example on the previous slide, x and y referenced the
same memory that a and b referenced

 Remember that variable declaration does two things:

 Allocates memory (one or more bytes of RAM, each of which has
a numeric address)

 Provides an identifier to reference the memory (which we use
instead of the address)

 Reference parameters are simply additional labels that we
temporarily apply to the same memory that was allocated with
the original declaration statement

 Note that this means that arguments passed to reference
parameters must be variables or named constants; in other
words, the argument must have its own address

EXAMPLE
Earlier, we looked at a trace of the program below, on the left. The program

on the right involves the same function, this time converted to a void function

with an extra reference parameter.

int multiply (int, int);

int main()

{

 int a, b, c;

 a = 2;

 b = 5;

 c = multiply(a,b);

 a = multiply(b,c);

 return 0;

}

int multiply (int x, int y)

{

 x = x * y;

 return x;

}

void multiply (int, int, int&);

int main()

{

 int a, b, c;

 a = 2;

 b = 5;

 multiply(a,b,c);

 multiply(b,c,a);

 return 0;

}

void multiply (int x, int y, int& z)

{

 z = x * y;

}

USING I/O STREAM OBJECTS AS

ARGUMENTS

 We have seen at least one function that takes an
input stream as one of its arguments: getline

 As you know, getline takes two arguments: an input
stream object and a string variable

 Based on what you know now, what parameter-
passing method does getline use for the string
variable?

USING I/O STREAM OBJECTS AS

ARGUMENTS

The prototype for getline looks something
like this:
void getline(istream&, string&);

The stream variable, like the string variable,
is passed by reference

Stream variables are always passed by
reference; you will get a compiler error if you
attempt to write a function with a value
parameter of a stream type

EXAMPLE

The following function opens an input file using the file name specified by the

program’s user. Since the file stream is passed by reference, the file passed to

the function will be open in both the current function and the calling function.

bool openInputFile (ifstream&);

// attempts to open the input file specified by the user; returns true if open succeeds,

// false if open fails

bool openInputFile (ifstream& inf)

{

 string fileName;

 cout << “Enter name of input file to open: ”;

 cin >> fileName;

 return inf.open(fileName.c_str());

 // c_str function converts string to format required by open()

 // function returns the result of the attempt to open the file (true or false)

}

MAKING GETNUM MORE VERSATILE

 Previously, we examined a function that provided a

“safe” input mechanism for integer numbers

 The function read a set of characters from the

standard input stream, converting digit characters

into their int equivalents and accumulating an int

result, which the function returned

 The function would be more versatile if it could read

input from any input stream, not just cin; a few

minor modifications make this possible

REVISIONS TO GETNUM

Prototype

Old: int getNum();

New: int getNum(istream&);

Function calls

Old: num = getNum();

New: num = getNum(cin); or:

ifstream infile;

openInputFile(infile);

// using function from a few slides

// back, and assuming success:

num = getNum(infile);

Function definition

int getNum(istream& ins)

{

 int num=0;

 char c;

 // skipping parts not changed

 ins.get(c); // old: cin.get(c);

 while (c != ‘\n’)

 {

 …

 ins.get(c);

 }

 // skipping parts not changed

 return num;

}

SCOPE OF IDENTIFIERS

The part of a program where a specific
identifier can be recognized is called the
scope of the identifier

Scope in a program is similar to fame in the
real world
 If scope is local, then the identifier can only be

used within its local area; outside this area, the
identifier is unknown. Like me (and probably
you), this identifier is not famous.

 If scope is global, the identifier can be used
anywhere in the program, because a global
identifier is “famous”

DETERMINING THE SCOPE OF AN

IDENTIFIER

 The scope of an identifier is determined by the
location of its declaration statement

 An identifier that is declared within a block (inside a
function, for example) is local to that block

 An identifier that is declared outside any block is
global to the file in which it is declared

EXAMPLES

The following identifiers are typically
declared in global space:
 Function names

 Named constants

Variables are almost always (you can forget
about “almost” for the duration of this
course) declared locally to functions

Some identifiers may be more local yet; the
control variable of a for loop is often
declared at the beginning of the loop; its
scope is limited to the loop itself

EXAMPLE
Determine the scope of each identifier in the following program

const double PI = 3.14159;

double area (double radius);

double circumference (double r);

int main()

{

 double radius;

 for (int x=0; x<5; x++)

 {

 cout << “Give me #: ”;

 cin >> radius;

 cout << “Area of circle ”

 << x << “ is ” << area(radius)

 << endl << “Circumference is ”

 << circumference(radius) <<

 endl;

 }

 return 0;

}

double area (double radius)

{

 double a;

 a = pow(radius, 2);

 a = a * PI;

 return a;

}

double circumference(double r)

{

 return 2 * PI * r;

}

DETAILED SCOPE RULES

1. Function name has global scope if declared outside any

other function.

2. Function parameter scope is identical to scope of a

local variable declared in the outermost block of the

function body.

3. Global scope extends from declaration to the end of

the file, except as noted on the next slide

53

DETAILED SCOPE RULES, CONTINUED

4. Local scope extends from declaration to the end

of the block where identifier is declared. This

scope includes any nested blocks, except as

noted in rule 5.

5. An identifier’s scope does not include any nested

block that contains a locally declared identifier

with the same name (local identifiers have name

precedence).

HOW COMPILER DETERMINES

SCOPE
When an expression refers to an identifier, the

compiler first checks the local declarations.

 If the identifier isn’t local, compiler works
outward through each level of nesting until it
finds an identifier with same name. There it
stops.

Any identifier with the same name declared at a
level further out is never reached.

 If compiler reaches global declarations and still
can’t find the identifier, an error message
results.

55

NAME PRECEDENCE

(OR NAME HIDING)

When a function declares a local identifier
with the same name as a global identifier, the
local identifier takes precedence within that
function

So far as the code in the body of the function
is concerned, the global identifier doesn’t
exist; the local identifier takes precedence,
effectively hiding the global identifier (your
friends are talking about you, not the
president) 56

